Calabi–Yau theorem and algebraic dynamics
نویسنده
چکیده
The aim of this paper is to prove the uniqueness part of the Calabi–Yau theorem for metrized line bundles over non-archimedean analytic spaces, and apply it to endomorphisms with the same polarization and the same set of preperiodic points over a complex projective variety. The proof uses Arakelov theory (cf. [Ar, GS]) and Berkovich’s non-archimedean analytic spaces (cf. [Be]) even though the results on dynamical systems can be purely stated over complex numbers. In the following, we will describe our results and main ideas in details.
منابع مشابه
A Finiteness Theorem for Elliptic Calabi-Yau Threefolds
The analagous class for surfaces are the K3 surfaces. All K3 surfaces are homeomorphic: there is one underlying topological type. On the other hand, there are a large number of topological types of minimal Calabi-Yau threefolds, but it is an open question of whether there are a finite number of such types. A stronger question would be to ask whether there are a finite number of families of alge...
متن کاملPrimitive Calabi-yau Threefolds
A Calabi-Yau threefold is a complex projective threefold X (possibly with some suitable class of singularities, say terminal or canonical) with ω X ∼ = O X and h 1 (O X) = h 2 (O X) = 0. One of the fundamental gaps in the classification of algebraic threefolds is the lack of understanding of Calabi-Yau threefolds. Here I will try to set forth a program to bring the morass of thousands of exampl...
متن کاملCalabi-yau like Pvhs and Characteristic Subvariety over Bounded Symmetric Domains
It is strongly desirable to find new global Torelli theorem for Calabi-Yau manifold, which extends the celebrated global Torelli theorem for polarized K3 surface. The work of B.Gross [6] is closely related with this problem. In fact, at the Hodge theoretical level, B.Gross [6] have constructed certain canonical real polarized variation of Hodge structures over each irreducible tube domain, and ...
متن کاملA Modular Non-Rigid Calabi-Yau Threefold
We construct an algebraic variety by resolving singularities of a quintic Calabi-Yau threefold. The middle cohomology of the threefold is shown to contain a piece coming from a pair of elliptic surfaces. The resulting quotient is a two-dimensional Galois representation. By using the Lefschetz fixed-point theorem in étale cohomology and counting points on the variety over finite fields, this Gal...
متن کاملThe cone conjecture for Calabi-Yau pairs in dimension two
A central idea of minimal model theory as formulated by Mori is to study algebraic varieties using convex geometry. The cone of curves of a projective variety is defined as the convex cone spanned by the numerical equivalence classes of algebraic curves; the dual cone is the cone of nef line bundles. For Fano varieties (varieties with ample anticanonical bundle), these cones are rational polyhe...
متن کامل